
.f

@L
¢

%

BxxnmP

date October 1, 1971 955L'EnfantPl_a NoAh,S.W.
Washington,D.C.20024

to Distribution B71 i0001

from A. J. Ferrari, M. V. Bullock

subjectEmpirical Orbit Determination

Using Apollo 14 Data -- Case 310

ABSTRACT

$

>

An empirical orbit determination meLhod has been shown

: to yield highly accurate navigation results when applied to lunar

orbit tracking data. Regressions and F:edictions of free flight

4
[ Apollo 14 tracking data exhibit minimal residual growth, and the

i solution orbital elements behave in a very consistent manner•¢

Solutions from data acquired during propulsive maneuvers result

in degraded predictions. The residual patterns from free flight

• processing are shown to be ccnsistent from pass to pass and are

!__ correlated with lunar topographic features.
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INTRODUCTION

Accurate orbit determination and prediction become

especially difficult for the case of a spacecraft in orbit about

a body whose gravitational potential field is not well known.

Most widely used processing methods employ a model of the gravity
• field, and hence the results are constrained by the quality of

the assumed model. An alternative method is an empirical scheme

which models the effects of the gravity field rather than the
causes. The Osculating Lunar Elements Program (OLEP) uses such

an approach for orbit determination in lunar orbit, representing

: the state of the satellite as time-varying orbital elements.
Estimates obtained for the constant and time-dependent parts of

each element are a result of the perturbing effects of the actual

gravity field; no model of the field is assumed.

In this study the orbit determination and prediction

capabilities of OLEP are investigated using Command Service
Module (CSM) Doppler tracking data from the lunar parking orbit

. of Apollo 14. Long and short arc solutions are presented, and
the behavior of the estimated osculating orbital elements is

studied. Correspondence between residuals and topographic fea-
tures is shown.

MATHEMATICAL DESCRIPTION

The OLEP*approach uses time-varying functions for the

low-eccentricity orbital elements, a, e s = e sin _, e = e cos _,; c
I, _, and m = _ + M, to model the motion of a spacecraft in an

*Bullock, M. V. and Ferrari, A. J., "Orbit Determination For

Lunar Parking Orbits Using Time-Varying Orbital Elments,"

i NASA Contractor Report 110008, May 1970.
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Apollo-type lunar orbit. A typical element is represented as

= + _i t_ _ (t) n°

_ ec, and m in the case_ with quadratic terms included for e s,

of regressions of more than two passes of data. The numerical

I singularities associated with nearly equatorial orbits areavoided by defining these low-eccentricity elements in a special

_ selenocentric frame which represents any orbit as a polar orbit.

• _ This transformation is accomplished by rotating the initial

estimate of the selenocentric state at epoch through two of its

i_ associated Euler angles (_,I).

,, The semi-major axis does not appear as an explicit
{ solution parameter. The constant and time-dependent portions of
t the remaining five elements constitute the parameter set for

:_'! which estimates" are obtained during the orbit determination pro-

i cans. The estimate for m I, the linear portion of the modified
:- anomaly, is used to imply a corresponding semi-major axis by

iii_ using the classical Kepler relationship

a = _ ,
m1

where _ is the Newtonian constant times the lunar mass.

,,, DATA ANALYSIS

' Orbit determinations are performed using free flight

[ and minimally corrupted data from Apollo 14. Since propulsive
maneuvers are not modeled in OLEP, the best orbit determination

results are to be expected when free flight data are processed.

Data acquired during coupled attitude maneuvers, such as land-

mark tracking, should be of free flight quality, but in practice

the jets are never perfectly balanced so a slight translation is
imparted to the spacecraft. At least two passes of data are

: processed in each case, since one pass does not contain enough
_: orbital period and time-varying information to enable OLEP to

: predict accurately. The effects of the CSM separation burn

[_; are also shown.

q.
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a. Processing of Free Flight Data

Pesiduals resulting from two-pass regressions of pre-
DOI tracking data are shown in Figures 1 and 2. "Jhis orbit is

characterized by a perilune of 8n.mi. and an apoldne of 60n.mi.

above the lunar surface. The two-pass fit, two-pass predict

residuals for the four sets of data are virtually identical,
with peak-to-peak values of ±.6 feet/second. The excellent

quality of the solutions is apparent in the fact that the pre-

{ diction residuals exhibit almost no secular growth and that they

maintain the characteristic short-periodic shape of the fit
_: residuals. As expected, some growth occurs when a two-pass

solution is predicted for five passes (Figure 2), but the solu-

_ tion still describes the orbit very well for the entire time
span. Peak-to-peak growth in the prediction region is less

than double that of the fit region, and the residuals still

display some short-periodic shape.

High quality results are also obtained when the OLEP
process is extended to multi-pass regressions. Two solutions

were obtained, one from the seven pre-DOI passes discussed above

_ and one from six post-DOI passes; the residuals from both are

shown in Figure 3. The post-DOI orbit was near-circular with

both perilune and apolune about 60n.mi. above the lunar surface.
In peak-to-peak value and residual shape these results are ex-

tremely similar to the two-pass fits.

b. Processing of Corrupted Data

I Figure 4 shows several examples of two-pass processing
of pre-DOI data acquired during various indicated maneuvers. The

solution from passes 3 and 4 was somewhat corrupted by landmark

_ tracking between passes 3 and 4 even though the maneuver was
•_ _ coupled, and the prediction residuals are markedly different from

those which resulted from free flight data processing. The peak-
_ to-peak value is more than double that in the fit region, and

the characteristic shape is lost. Similar results occur when a
solution from free flight data is predicted through data containing

maneuvers. LM RCS jet hot firing tests were performed during pass
ii, and the undocking and separation maneuvers occured in pass

12. These events changed the orbit so that the solutions from

the previous passes no longer describe it adequately.

OSCULATING ELEMENT COMPARISONS

A further indication of the quality of the solutions

obtained by the OLEP method is consistency in the behavior of
the estimated parameters. Local estimates of the orbital elements

i i| i
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are obtained from two-pass fits using passes 4-10, and a single
fit over the entire data span gives a set of long-term estimates.
The long-arc fit should provide more accurate estimates of the

elements than the short-arc fits because the longer interval
gives the process more information about the time behavior of
the elements.

Figures 5 and 6 show comparisons of eccentricity, incli-

: nation, longitude of the ascending node, and argument of perilune
from short and long-arc fits. The perturbing effects of the earth

and the sun on the elements were analytically removed from the
' long-arc solution. The resulting variations in the elements are

i presented to non-central gravitational fea-
show the effects of

tures on the spacecraft. Extremely accurate estimates of e, _,
: and _ were obtained from the short fits. The local estimates

; follow the slopes of the long-arc estimates very closely. The
inclination estimates are not as consistent, but this is not an

unexpected result since the inclination is the most difficult

parameter to determine.

RESIDUAL ANALYSIS

In Figure 7 the residuals from passes 4-10 are given

as a function of the longitude of the sub-vehicle point, with
"_ the consecutive passes being overlaid. The OLEP process esti-

{ mates only the secular and long-period perturbing effects of
the gravity field, hence the residuals are short-periodic line-

of-sight velocity errors. The consistency of the residual

_ pattern from pass to pass is especially striking. Prominent
• topographic features over which the spacecraft passed are noted

i_ on the figure. Their effects on the orbit can be seen in thecorrespondence between these features and the occurrence of the

!I largest residuals.

I SUMMARY AND CONCLUSIONS

It has been demonstrated that highly accurate orbit

determination and prediction can be performed with no assump-
tions about the lunar gravity field using the OLEP process. The

residuals from the processing of free flight Apollo 14 data
experience minimal secular growth and exhibit a characteristic

short-periodic shape. The orbital elements resulting from two

pass solutions behave in a consistent manner when compared with
elements from a long-arc solution. The quality of the results

is reduced using data acquired during maneuvers; even coupled

maneuvers impart some change to the orbit since the jets are

'j ,
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not perfectly balanced during these firings. Consistency in
the residual pattern from consecutive passes of free flight
data is shown, and the residuals are correlated with sub-

vehicle topographic features.

A. J. Ferrari

AJP
2014-MvB-hat M.V. Bullock
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